Robots, Foreigners, and Foreign Robots: Policy Responses to Automation and Trade

Stephen Chaudoin and Michael-David Mangini

January 26, 2023

Abstract

Why do politicians blame offshoring for job losses and not automation? Why do voters demand tariffs in response and not redistribution? We argue that the collision of economic nationalism and comparative advantage helps answer both questions. Opportunistic politicians emphasize offshoring because economic nationalist voters - who dislike imports – support tariffs but not automation regulations. We develop a general formal model of a citizen’s demand for policy in response to economic shocks, where citizens form preferences over redistribution and a policy that blunts the shock. The source (foreign versus domestic) and type (labor versus automation) of a shock affects the citizen’s preferred policy bundle. We use survey experimental evidence to show that domestic automation shocks increase relative support for redistribution versus regulations, while globalization increases weight on protectionism. Emphasizing foreign-produced automation reweights responses towards regulations. This helps explains how the tide could turn against automation as a window opens for politicians to cast technology as foreign.
1 Introduction

The surge in anti-trade sentiment embodied by the election of President Donald Trump spurred renewed interest in the political consequences of economic dislocation. A variety of work links trade with political support for protectionist candidates and platforms, authoritarianism, and opposition to incumbents.\(^1\) The changes brought about during this time period have been very large, leading some scholars to worry about the end of the liberal economic order.\(^2\)

Yet, if trade-induced economic anxiety led to massive political shifts, then two related questions arise. First, why didn’t the rise of automation do the same? Automation is thought to cause greater economic dislocation than trade.\(^3\) Yet, according to politicians who have effectively channeled economic anxiety, trade is the chief villain, not automation.\(^4\) Politicians have stoked support for tariffs as a way to “backpedal” against globalization, yet they generally neglect or oppose regulations that would blunt dislocation from automation. By April 2020, President Donald Trump had referenced “automation,” “robot,” or “technology” in 29 tweets but referenced “trade” or “tariff” in at least 528 tweets.

Additionally, if trade induced intense anxiety among voters, why didn’t they respond by supporting greater redistribution to those harmed? A citizen harmed by globalization can be helped with tariffs, but she can also be helped by better social safety nets, unemployment insurance, or job retraining. From a purely material, economic self-interest perspective, redistribution helps workers regardless of whether dislocation comes from automation or globalization. And yet, pundits routinely ask whether automation or trade is more to blame for the decline of manufacturing as if there were no policy solutions which could mitigate both.

We argue that the combination of economic nationalism and comparative advantage

\(^1\) For a recent summary, see Colantone, Ottaviano, and Stanig (2022).
\(^2\) Jervis et al. (2018)
\(^3\) Di Tella and Rodrik (2020)
\(^4\) Zhang (2022), Ballard-Rosa, Goldstein, and Rudra (2022), Wu (2022a)
sheds light on both questions. We construct a general formal model of a citizen whose country faces a shock that has subnational distributional consequences. The citizen chooses her preferred bundle of responses to the shock, comprised of a policy response that blunts or backpedals against the shock (e.g., tariffs to slow globalization or regulations that slow shifts to automation) and redistribution that compensates losers from the shock. We assume the citizen is an economic nationalist, meaning that they dislike imports and prefer national self-sufficiency. For an economic nationalist living in a technology or capital abundant state, imports of labor-intensive products both cause dislocation and increase dependence on foreign production. This increases the weight she places on tariffs as the response. Redistribution only address the distributional consequences of the shock—it does not satisfy the economic nationalist who laments dependence on imports. What’s more, tariffs and redistribution are substitutes: tariffs partially mitigate dislocation, reducing the need for transfers.

By contrast, economic nationalists in capital-abundant states are ambivalent about using regulating to slow automation shocks. Automation technology developed domestically causes dislocation, but it promotes national economic self-sufficiency. Therefore, opportunistic politicians neglect dislocation from automation because their constituents are conflicted about the merits of regulating it directly. Citizens place greater weight on transfers since they mitigation dislocation, without harming the national technology industry with regulations. Put simply, the perceived origin of economic dislocation—domestic versus foreign—affects how much weight citizens place on backpedaling policies versus redistribution, in their preferred response.

We assess the predictions of the model with two large survey experiments conducted in the United States. Within a realistic news article about layoffs at an auto plant, we first randomly vary two features: (1) the type of shock—automation versus labor and (2) the source of the shock—domestic or foreign. Respondents read the article then indicate support for redistribution and a backpedaling policy (e.g., tariffs or regulations limiting...
automation). We find that support for redistribution, relative to the backpedaling policy, increases for domestic automation shocks versus foreign labor shocks, consistent with the theory.

The model also predicts that making the source of automation foreign, as opposed to domestic, will decrease support for redistribution and increase support for a regulatory remedy. To show this, we also include treatments with foreign automation shocks – where technology developed by foreign firms replaces U.S. workers – and domestic labor shocks – where jobs move from one state to another. Existing work has compared prompts about trade to generic automation prompts, and interpreted the differences in light of the foreignness of trade and the presumed non-foreignness of automation. We explicitly manipulate the foreignness of labor and automation shocks to provide direct evidence for how foreignness matters. As predicted, making automation foreign changes increases the weight placed on automation regulations relative to redistribution.

The second experiment replicates these results in a different time period, using an informational treatment instead of an article vignette, focusing solely on automation. We leverage the replication experiment to further show which aspects of economic nationalism are the strongest explanations for our findings. Economic nationalism can arise from a security-related aversion to imports, a concern about relative gains, or identity-based concerns about who wins or loses within a country. Treatments emphasizing the first two explanations have stronger effects on increased weight placed on regulations compared to redistribution.

Our model and results contribute to the growing body of work on the politics of automation.5 Existing work emphasizes how citizens misattribute blame to trade instead of automation and therefore support tariffs.6 Our work helps give a theoretically prior explanation for misattribution, showing why politicians can successfully attribute blame to trade and rally support for protection. Additionally, most work considers preferences for

5Gallego and Kurer (2022), Owen and Johnston (2017)
backpedaling policies or redistribution in isolation. Our model makes clear how attributes of a shock affect a citizen’s preferred bundle of policy responses, which can act as substitutes for one another.

Our research has important implications for the growing international political economy of automation. By all indications, the pace of growth for digitization, ICT, and artificial intelligence is quickening. Increasing numbers, and increasingly higher-skilled workers, will find their vocations at risk. These trends portend a potential political crisis as large at that triggered by globalization. We wholeheartedly agree with Wu (2022a) on the importance of “future research to examine the conditions in which the public’s enthusiasm toward technology might break down” (3). E. Mansfield and Rudra (2021) similarly call for more research on “the political conditions under which governments compensate segments of society that suffer as a result of technological change” and on “the political conditions under which governments support and regulate technological change.”

Our research suggests that the answer lies in potential shifts in the perceived foreign origins of technology. So far, the development of automation has been pioneered by knowledge clusters in the United States, like Silicon Valley. However, other countries are closing the technological gap – a phenomenon we document concretely below. China has demonstrated its ability to compete in high tech industries through its investments in Huawei and 5G technology. As non-US firms develop their capabilities to produce automation technology, then the pressure on jobs in the United States might become more attributable to foreign rather than domestic technology. Our theory predicts that an influx of foreign technology could finally stimulate demand for policies limiting automation.

2 Shocks and Remedies

A growing body of literature assesses how economic shocks and dislocation affect political preferences. Dislocation from globalization has attracted the most attention from re-
searchers and politicians alike. Most existing work studying reactions to globalization, explains the trend as a “backlash” against decades of openness. Surprisingly, existing work finds a weak, or even negative, relationship between globalization-induced dislocation and support for redistribution to compensate workers harmed by trade.\footnote{Rodrik (2020).} Di Tella and Rodrik (2020) and Naoi (2020) survey US and Japanese respondents, respectively. They find that prompts about globalization shocks raise support for protectionism, but decrease support for compensation for the losers.\footnote{For one exception, see Che et al. (2016) who find that globalization increased support for Democrats in the US House, who then supported redistribution.} This occurs despite the price effects of tariffs, which voters dislike.\footnote{Casler and Clark (2021).}

Research on the political effects of automation follows a similar pattern. Several works link exposure to automation with support for protectionism.\footnote{Anelli, Colantone, and Stanig (2019), Owen and Johnston (2017), Im et al. (2019), Milner (2021).} Findings relating automation and support for redistribution are mixed, as in research on trade-related dislocation. Thewissen and Rueda (2019) and Busemeyer and Sahm (2021) find that exposure to automation increased support for redistribution using survey data from Europe and 24 OECD countries, respectively. Golin, Rauh, et al. (2022) find that exposure to information about automation increase support for taxation and universal basic income. However, Zhang’s (2022) aptly-titled work, “No Rage Against the Machines,” finds little effect of automation primes on US respondents’ preferences over trade or redistribution policy. Gallego et al. (2022) and Kuo et al. (2022) find that exposure to automation and subjective risk of automation, respectively, do not increase support for ex post redistribution policies. Jeffrey (2021) finds that, initially, UK respondents who feel vulnerable to automation are unaffected or even less supportive of redistribution, though fairness rhetoric can change their opinions.

To explain why trade receives blame and tariffs receive support, existing work empha-
sizes blame misattribution, wherein a worker suffering from automation-induced dislocation is “unlikely to have recognized the true causes of the [economic] concerns.”¹¹ This leads to support for protectionism, instead of support for automation restrictions.¹² Wu (2022a) shows that people with jobs at higher risk of computerization are more opposed to globalization. Di Tella and Rodrik (2020) similarly find that automation prompts increase support for tariffs. Wu (2022b) finds that prompts about job loss from automation increase support for tariffs among US Democrats and immigration restrictions among Republicans. Blame misattribution is so severe that, among Democrats, automation prompts raise support for tariffs — even more than prompts about offshoring to China or import competition!

Each author interprets these results as evidence that politicians can successfully misattribute blame because trade is foreign, while automation is presumably not. Out-groups, especially foreign workers, are easier to target than automation. It is also more difficult to attribute malicious intent to a robot than to a foreigner who has agency.¹³ Blame misattribution then explains why citizens demand tariffs, instead of transfers or automation regulations. Tariffs are the “appropriate” response because they directly address the shock.

2.1 Foreign Robots?

Our paper contributes by bringing direct evidence to bear on whether the foreignness of a shock matters and why. In the aforementioned experiments, the origin – foreign versus domestic – of the technology generating an automation shock is left unspecified. We consider directly the possibility that people can perceive an automation shock as having domestic or foreign origins, which can affect their preferred responses.

Existing research has good reason to presume that many citizens think of automation as a *domestic* shock. However, trade data suggest that the window of opportunity for a

¹¹Frey, Berger, and Chen (2018), p. 428

¹²See also Hai (2022).

politician to cast automation as *foreign*, and therefore worthy of a direct regulatory response, is widening. A politician wanting to harness anxiety triggered by automation could highlight the foreign origins of industrial robots.

Figure 1 shows how the United States’ trade deficit in physical machinery to automate manufacturing has exploded in the last 30 years. To quantify trade in automation machinery, we use reports on tariff classification rulings to identify the Harmonized System codes most clearly associated with automation products and manufacturing robotics.\(^{14}\) In the 1990s, the United States ran a relatively small trade deficit in automation technology, about 180 million. By 2020, this deficit increased by 1472%, to 2.8 billion dollars.

\(^{14}\)Mangini (2022). Trade value data are from COMTRADE.
shows how some countries’ imports and exports of automation technology changed over this same time period. Each vector shows a country's starting point in 1990 and how its automation trade balance changed by 2020. We mark countries with growing net exports with a “+” and those with shrinking net exports with an “o.” China, Vietnam, and Malaysia showed the largest gains in automation exports.

The largest automation exporters in 1990 – Germany and Japan – are largely viewed as geostrategic partners to most countries in the “West.” They accounted for almost 80% of global exports. Yet, by 2020, their shares of global exports decreased by half, with newcomers like China making large gains in export share. Antipathy towards China, with emphasis on its identity as an illiberal non-democracy15 and its role as a geopolitical adversary to the United States, was a pillar of the anti-globalization sentiment stoked by Donald Trump.

Figure 2: Circles indicate states whose automation imports grew faster than exports. Crosses indicate states whose automation exports grew faster. 1990-2020.

15Chu (2021)
2.2 Aspects of Economic Nationalism

Perceived foreignness matters because citizens have preferences that incorporate economic nationalism. Economic nationalism has become a very stretched concept. Here, we mean a set of preferences for domestic production and a dislike of imported goods or technology. We delineate three different reasons for a dislike of imports, which provides greater specificity for why foreignness matters. These aspects of economic nationalism are not mutually exclusive or exhaustive of all reasons someone might dislike imports. We think they are the three most likely candidates for why the foreignness of a shock matters.

First, nationalists fear foreign reliance and value self-sufficiency. They want the national and political units to be aligned and they expect the state to support the interests of the nation as they perceive it.16 Economic linkages can be used strategically to undermine the sovereignty of the state and subvert its ability to support the nation. Foreign states can make market access to important goods or technologies conditional on political demands. Nationalists who identify the foreign state as an outgroup would resist foreign influence because it makes the state will serve two masters.

Existing work on trade emphasizes this downside to economic integration. Carnegie and Gaikwad (2022) extensively document public aversion to trading with geopolitical adversaries. Schweinberger (2022) finds that mercantilist tendencies and dislike of trade deficits are magnified for trade with rising power adversaries.

Second, globalization research emphasizes nationalist concerns about the relative gains accrued by fellow citizens versus foreigners. Mutz and Kim (2017) call this in-group favoritism, where people “make choices to maximize the difference between the extent of in-group and out-group benefits” (831). Many people believe that the location of production determines whether their fellow citizens accrue gains through employment, making them prefer domestic production.

16Gellner et al. (1983).
In the first two types of nationalist preferences, the relevant in-group/out-group
distinction is cross-national, demarcated by national borders. They fit within the concept of
“unity nationalism” as “[requiring] that group members prioritize actions that contribute
to the group’s betterment even when they must pay individual costs (46).”\footnote{17} With globalization, the “action” is forgoing the benefits of globalization by erecting barriers, for the
betterment of the nation.

Other research on trade emphasizes how shocks redistribute wealth or status across
different groups within a nation. If someone defines their in-group as an identity nested
within their country – e.g. along racial lines – then they might think that trade hurts their
in-group members, even if it benefits others in their country. Perceptions of the costs and
benefits for a subset of one’s fellow citizens determine policy preferences, irrespective of
aggregate gains. For example, Guisinger (2017) documents how political ads overwhelmmingly portray protectionism as benefiting white workers. Whites in diverse areas were
more supportive of protection, because they viewed it as beneficial to their in-group. Bac-
cini and Weymouth (2021) and Baccini, Ciobanu, and Pelc (2022) argue that whites feel
more harmed by globalization, compared to African Americans, which spurs their support
for populists.

Crucially, these three aspects of nationalism could extend beyond trade, to affect pref-
erences over automation. With respect to self-sufficiency, reliance on imported technol-
ogy also creates vulnerability to foreign influence, just as a reliance on foreign final goods.
The foreign state could even use the technology for industrial and political espionage. The
recent spats between the United States and China over Huawei-sourced technology and
TikTok emphasized their potential threat to national security.

Nationalists concerned about relative gains may believe that imported automation
technology harms national welfare in the same way as trade – they fear that it benefits a
foreign state more than their own. These nationalists need not be skeptical of dependence

\footnote{17}Powers (2022).
on foreign technology per se; ultimately, they worry about the consequences of foreign technology for relative economic gains.

Finally, with respect to within-nation group identity, nationalists may believe that any negative consequences of importing technology will be borne disproportionately by their group. For example, nationalists might perceive imported technology as being more likely than domestic technology to automate jobs belonging to in-group members. Even if the new technology lowers prices, nationalists would resist foreign automation as long as their conception of the nation emphasizes people who are suffering the costs via job loss.

3 Theory

We now turn to a formal model of a citizen’s preferred government responses to a shock that raises aggregate income for a country but differentially affects winners and losers within the country. We follow recent research de-emphasizing whether a particular citizen is harmed by a shock, eg because of her factor ownership or employment sector, since most citizens’ jobs are not directly tied to a shock and many cannot link economic models with their own fortunes.\(^{18}\) We therefore model preferences that have sociotropic and egocentric components, with preferences that give differential weight to particular groups within society.\(^{19}\)

We depart from existing work by allowing two forms of response to the shock, transfers, which redistribute money within a country, or a backpedaling policy that blunts the shock’s impact. By the latter, we mean government actions that directly counteract the shock itself, mitigating any gains or losses from the shock. For a globalization shock, protectionism achieves this. A tariff lessens any gains from trade, but also ameliorates domestic dislocation by deterring firms from sourcing from abroad or encouraging the firm to re-shore production.

\(^{19}\) E. D. Mansfield and Mutz (2009).
For automation, this can be thought of as any policy that restricts firms ability to replace workers with technology. So-called “robot taxes” that tax profits from replacing workers with automation are the clearest examples. Examples also include worker protections making it harder to replace employees with technology or regulations delaying the use of new technology by requiring extensive testing. Though less prevalent in US politics, automation regulations are more widely discussed and implemented in Europe. The European Union has moved forward with a Machinery Directive pertaining to the safety of automation, among many other regulatory efforts.\footnote{https://ec.europa.eu/commission/presscorner/detail/en/ip_21_1682.} Even in the United States, there is some discussion of these types of regulations, though they tend to be industry specific. For example, the Congress has heard heated debate over proper regulation of autonomous vehicles, with transportation workers unions advocating for greater regulation.\footnote{https://www.twu.org/wp-content/uploads/2022/01/TWU-TI-AV-Hearing-Testimony-2.2.2021.pdf.}

Our formal model focuses on a “demand” side explanation for policies, but fits within a broader framework that accounts for elites’ “supply” of policies.\footnote{Rodrik (2020).} Politics is a highly competitive marketplace, where opportunists are always looking for an argument or grievance that will rally support. Some elites understand or intuit how shocks create fertile ground for certain arguments to take root. They then supply the corresponding platform or further stoke those shifts with identity-reinforcing cues.\footnote{Balcazar (2021).} Our model helps explain why certain political platforms resonate with citizens.

3.1 The Political Economy of Redistributive Shocks

We consider two types of shocks: a globalization shock and a technology shock, denoted $k \in \{G, T\}$. Both types of shock create aggregate gains of magnitude A. For a globalization shock, gains arise from offshoring which lowers prices or raises the quality of goods for domestic consumers. For an automation shock, gains arise from increased production
efficiency, allowing firms to lower prices and export more abroad.

Both types of shocks also cause internal economic dislocation. While everyone benefits from the positive aspects of the shock, some subset of the population is net-harmed. Losses for workers losing their jobs to foreign workers or automation outweigh any benefits. Citizens whose employment is unaffected are net winners. We denote the groups with W (winners) and L (losers). We assume the shocks satisfy the Kaldor-Hicks criterion: the total gains to W exceed the total losses inflicted on L. The total income before the shock in both the W and L groups is I.24 The net gains experienced by the W and L populations will be αA and $(1 - \alpha) A$, respectively, where $\alpha > 1$ governs the degree of dislocation induced by the shock.

For either type of shock, the government can choose a backpedaling policy response, p, that blunts economic dislocation. Our conception of a policy response is general: it is any policy which interrupts the economic reallocations, both good and bad, caused by the shock. The government’s choice of p is continuous, reflecting how the policy response can be more or less severe. Formally, we assume that aggregate gains A are decreasing in p.

The government can also respond with transfers, t, that redistribute income from the winners to the losers, without directly blunting the shock. The transfer t represents the size of the net transfer from winners to losers, via taxation and redistribution. With transfers, the shock and ensuing dislocation occur, but redistribution can ex post affect the final income distributions among winners and losers. Like many models, we assume that transfer mechanisms are imperfect. The “leakiness” of the transfers t is represented by a function ℓ such that $\ell(t) < t$. Consistent with existing literature, we assume the function ℓ is continuous but could be nonlinear.25 We further assume that $\ell'(0) = 1$, $\ell'(z) < 1$ for all $z > 0$, and $\ell''(z) < 0$ for all z. Together, these assumptions imply that larger transfers are monotonically more leaky.

The automation and globalization shocks differ in one important way: a globalization

24The groups can be given different incomes without affecting analysis.

25Dixit and Londregan (1996).
shock is a “foreign” shock and an automation shock is “domestic.” This distinction refers to whether the shock changes the location of production, and relatedly, its effect on trade. A globalization shock is “foreign” in the sense that production moves abroad and, all else equal, the country in question imports more. An automation shock is “domestic” in the sense that no production is moved abroad, and all else equal, the country exports more. The setup is consistent with studying a country like the United States which has comparative advantage in the production of capital intensive products including automation technology. We highlight this distinction here, because citizens have preferences over the location of production, as explained below.

3.2 Preferences for Income Equality and Efficiency

How do individuals think about the choice of a backpedaling policy and transfers? We define the citizen’s utility function as: $U(H_W, H_L, p|\gamma)$. Our assumptions about this function create two, interrelated tradeoffs.

The first two arguments, H_W and H_L, represent the incomes of the W and L individuals respectively. We assume U is strictly increasing in both H_W and H_L. We also assume that U is convex in its arguments H_W and H_L. Together, these assumptions create a trade-off between efficiency and equality. All else equal, the citizen likes to increase the wealth of both groups. The convexity assumption means that, all else equal, she prefers a more equal distribution. The tradeoff arises because a citizen’s preferred response to the shock can reduce aggregate gains – either with a backpedaling policy or a leaky transfer – in order to achieve a more equal income distribution. But this comes at the cost of shrinking the total national income.26

The third term in the utility function, p, allows for the policy intervention to directly affect utility, via its effect on the trade balance. For a globalization shock, utility is increas-

26Note that our treatment of preferences for equality is general. It accommodates the possibility that the citizen places different weights on each group’s income. The convexity assumption only implies that she prefers some (possibly weighted) convex combination of incomes to more unequal distributions.
ing in p, since protectionism improves the trade balance. For an automation shock, utility is decreasing in p, since automation regulations harm exports.

The magnitude of the effect of p on utility is conditional on $\gamma \in [0, 1]$. γ describes the intensity of the individual’s economic nationalist sentiments, i.e. how much she prefers domestic production. When $\gamma = 0$ the individual does not care directly about the trade balance; she only cares about policy responses’ effects on each group’s welfare. Such a “cosmopolitan” citizen does not care whether income changes result from a foreign or domestic shock. Note that cosmopolitans can still be nationalists in the sense that they care mostly about the welfare of their fellow citizens. Our assumption is only that they have no preferences about the location of production.

For an economic nationalist, where $\gamma > 0$, utility increases with the trade balance. Economic nationalists prefer national income arising from exports as opposed to imports. In a capital or technology abundant state like the United States, labor intensive products are imported and capital intensive products are exported. Therefore, a nationalist in the United States receives additional utility from restricting imports of labor intensive products and loses utility from regulating the production of technology intensive products.

These assumptions about p and γ create the second tradeoff for a citizen: between preference for national income and preference for self-sufficiency. Economic nationalists would demand policies that increase domestic production, but such policies may also harm national income by blunting the positive effects of a shock. Formally, we assume that — for a globalization shock — a citizen with nationalist preferences receives positive utility from protection: $\partial U(\cdot, \cdot, p | \gamma \neq 0, k = G)/\partial p > 0$. For an automation shock, policy responses will limit exports and the nationalist receives disutility from the policy: $\partial U(\cdot, \cdot, p |, \gamma \neq 0, k = T)/\partial p < 0$.

\footnote{We do not consider the possibility that citizens may prefer goods produced abroad. As an empirical matter, these people are likely to be rare; most people prefer domestic production.}
3.3 Demand for Backpedaling Policy and Transfers

How do citizens form their indirect utility for policies and transfers? In short, since backpedaling and transfers are substitutes, citizens choose the optimal pairing of the two responses. The citizen’s degree of nationalism tilts the optimal bundle towards the policy response in the case of a foreign shock and towards transfers in the case of a domestic shock.

This logic can be illuminated by a careful analysis of how the citizen forms preferences over policies. Voters always want more efficiency if they can get it without sacrificing equality. But not every income allocation is feasible; voters are restricted to choose among only the income allocations which can be implemented with transfers and protection/regulation. The set of feasible allocations is therefore \[Y = \{(H_W, H_L) : H_W = I + \alpha A(p) - t, H_L = I + (1 - \alpha) A(p) + \ell(t)\}. \] \(^{28}\)

How does the citizen choose a level of policy intervention \(p\) and a level of transfers \(t\) to achieve their preferred balance between equality and efficiency? Figure 3 shows the citizen’s optimal policy choices in vector form, in response to different shocks. In each pane, the horizontal axis shows the income of the losing group and the vertical axis shows the income for the winning group. The point of origin for the vectors in the top left represents the income distribution resulting from the shock, which would remain without any government intervention.

It is helpful to start with the left pane – a “purely” cosmopolitan citizen facing any shock. She first chooses her preferred income allocation based on the equality and efficiency trade-off, which is the point at the end of the green vector in the bottom right. Her total response reallocates income from the winners to the losers, arriving at this destination point. She stops this reallocation when further efficiency losses outweigh further equality gains.

The blue and red vectors show how she achieves this reallocation. The red vector, la-

\(^{28}\)See appendix for derivation.
belled v_p, shows how much reallocation results from the backpedaling policy. The blue vector, labelled v_t, shows how much reallocation results from transfers. She balances the degree to which she uses each option to reallocate income based on the leakiness of transfers. If transfers become leakier, she places greater weight on the backpedaling policy to achieve her preferred allocation.

To show the relative weights of each response, we project the blue vector onto the middle vector, $\text{proj}_{v_t + v_p} (v_t)$. The length of this projection shows the relative weight placed on transfers, as a proportion of the length of the total income reallocation, $||v_t + v_p||$. In the example in the figure, the total reallocation (6.28) is achieved by approximately $2/3$ emphasis on transfers (length of 4.3) and $1/3$ on backpedaling policy (remaining length of 1.98).

Now consider the middle pane, showing a nationalist – who also has preferences over the location of production – facing an identical foreign shock. To isolate the effect of these additional preferences, we fix this nationalist’s preferences over the efficiency/equality trade-off to be identical to the cosmopolitan just considered.

Foreign shocks have importance consequences for a nationalist citizen’s choice of government response. We again project the vector representing their preference for transfers onto a vector representing their total preferred response. The nationalist still balances equality and efficiency, but because she has preferences that stem directly from the trade balance, she is more inclined to deploy backpedaling policies that reduce imports. Of her total reallocation ($||v_t + v_p|| = 4.01$), only about $1/4$ is achieved through transfers ($\text{proj}_{v_t + v_p} (v_t) = 1.17$). The remainder (2.84) is achieved through backpedaling policy.

The nationalist places a greater weight on backpedaling policies because her nationalist’s benefit from reducing imports is compensation for the efficiency loss of restricting trade. This also helps her partially achieve her preferred balance between equality and efficiency, so the nationalist subsequently demands fewer transfers. In other words, the demand for trade barriers crowds out the demand for transfers. Note too that this changes
the total reallocation and resulting income distribution that she chooses. Incomes are more unequal across groups in the middle pane, compared to the left pane. The nationalist does not choose an allocation on the frontier of the feasible set, because doing so means foregoing their intrinsic benefits of interrupting imports. The backpedaling policy has gotten her closer to a more equal income allocation, so when considering additional transfers, she more quickly reaches the point where transfer inefficiency outweighs further gains in income equality.

The opposite logic occurs when this same nationalist considers an advance in domestic automation technology – shown in the right pane. The nationalist is especially wary of backpedaling policies that would harm domestic firms. Thus, she experiences an additional penalty for backpedaling against the shock. Relative to the cosmopolitan, the nationalist demands less backpedaling policy. She still seeks to balance equality and efficiency, but she does so by relying more heavily on transfers \(proj_{v_t+v_p}(v_t) = 4.51 \).
Figure 3: The figure depicts weights on each response as a vector decomposition of the total response. The green vector shows the total desired redistribution $v_t + v_p$. The yellow vector shows the weight placed on transfers – the projection of v_t onto $v_t + v_p$.
Finally, Figure 3 makes clear that it is important to consider relative weights a citizen places on each response – not just how much she wants backpedaling policies or transfers, in isolation. We held fixed the size of the shock in our thought exercises, but different types of shocks can trigger different levels of total responses from a citizen. For example, if a citizen perceived a foreign shock to be bigger than an domestic shock, this could change her total response. A citizen might perceive transfers or backpedaling as more or less inefficient when considering tariffs versus automation restrictions.

However, our theory makes clear that – regardless of how large or small a citizen perceives a shock to be – the relative weights she places on particular responses will vary in predictable ways. Regardless of the perceived shock size, citizens with some degree of economic nationalism will prefer greater policy responses to foreign shocks, as a proportion of their total response, compared to domestic shocks. Conversely, they will prefer weaker transfers, relative to their demand for backpedaling, when facing a foreign shock, as opposed to a domestic shock. In other words, the theory generates a sharp prediction for relative weights which is especially important since it also makes clear that there are not sharp predictions for absolute levels of support.

3.4 Predictions

Table 1 below links the above prediction with the empirical evidence below. The middle and right panes of Figure 3 correspond to a comparison between the top left and bottom right cells of Table 1. When thinking about a foreign labor shock, like outsourcing or import penetration, an individual likely places greater weight on tariffs as a direct response and less weight on transfers. For a domestic automation shock, an individual likely places greater weight on transfers, and less weight on backpedaling – in this case, regulations.

Inconsistent results in the literature could be due to how respondents perceive the magnitude of different treatments. The effect of a shock on total response is complicated. For example, a nationalist’s total preferred redistribution may increase or decrease relative to the cosmopolitan’s. We show in the Appendix that the net effect on incomes is indeterminate. For example, nationalists facing a shock that raises imports could reduce their preference for transfers by more than they increase their preference for tariffs or not.
Table 1: Predicted Effect of Shock Type on Responses

<table>
<thead>
<tr>
<th></th>
<th>Labor</th>
<th>Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign</td>
<td>More Protection, Fewer Transfers</td>
<td>More Regulation, Fewer Transfers</td>
</tr>
<tr>
<td>Domestic</td>
<td>Less Protection, More Transfers</td>
<td>Less Regulation, More Transfers</td>
</tr>
</tbody>
</table>

on replacing labor with automation. This comparison, where we examine preferred responses to prompts about foreign labor versus domestic automation shocks, is the first one we consider empirically below.

The second prediction considered below corresponds to how an individual reacts when moving from the bottom right to the top right cells. If we take an automation shock, and “make it foreign” as opposed to domestic, our theory predicts that citizen will demand a greater degree of regulations on automation adoption, and place a relatively weaker weight on transfers.

4 Survey Experiment

To assess these predictions, we conducted an online survey experiment that varied the type and source of an economic shock and let respondents indicate support for different government responses. In two waves occurring September and October 2020 we sampled 3,154 US respondents, 18 or older, using Lucid Theorem. Lucid recruits samples that are representative of the country on a variety of demographic characteristics, including gender, age, education, party identification and household income, making the respondents more representative than samples recruited from similar platforms.

30 Note, that this is a prediction that is about direct regulations on automation, not simply on tariffs. This prediction is not that “making automation foreign” will increase demand for tariffs; rather that this will cause citizens to demand greater direct regulations of automation.
4.1 Treatment

Respondents answered initial demographic and opinion questions then were randomly assigned to one of four treatments, which were newspaper articles that we composed about layoffs in an automotive plant.31 We used an article that we created in order to maximize the realness of the treatment while holding everything else about the article constant. Respondents were pre-briefed in the informed consent process that they might be shown false information and they were also debriefed about the deception. The risks of this deception were minimal, since all versions of the article contained content similar that found in real articles. It would not have been possible to find real articles that were similar enough to each other – except for the characteristics of the economic shock – to make inferences. We also wanted treatment to be realistic and mimic the treatment respondents receive in the real world, to increase the external validity of the experiment.32

Each respondent read the same first page of the article, shown in Figure 4. It laid out the situation, displayed a picture of an auto worker, and included a quote attributed to the CEO.33 Treatment consisted of random assignment to one of four versions of the second page of the article. The versions varied the type of shock – labor versus automation – and the origin of the shock – foreign versus domestic. Our key concern was making sure that all four versions matched each other closely in structure, overall tone and content, except for variation in the type and origin of the shock. Since the pictures themselves are also part of the treatment, we chose them very carefully to make sure that they conveyed the content as intended.

The foreign labor shock, left pane of Figure 5, was described as originating from globalization and offshoring. It included a picture of large shipping containers arriving at a US port and a planned factory site overseas. The text described companies moving jobs

31 We used a blue-collar industry for the vignettes because the majority of elite discourse about trade and automation focuses on these industries.

32 See appendix for more details on the use of deception.

33 We intentionally left the gender and race of the worker obscured.
General Motors closing plant, laying off 1,500 Michigan workers

by date - 12/30/2019 6:00 PM EST

General Motors (GM) announced this week that it will close a plant in Michigan, laying off more than 1,500 workers as it tries to address financial losses.

The news comes just months after GM announced it would be laying off 200 workers at a plant in neighboring Ohio.

GM said they expect to end the plant’s light truck manufacturing operations by September 1, 2020, with another part of the plant closing by the end of 2020. The estimated job loss is 1,545 workers.

“We are conscious of the impact this decision will have on our employees, their families, and the local community, and we are announcing it now to provide them with as much time as possible to prepare for this transition,” the CEO said in a press release. “These decisions are never easy, nor are they taken lightly.”

Figure 4: First page of news article, read by all respondents
abroad and shutting down US production facilities.

The domestic automation shock, second pane, was described as originating from firms developing computer software and advanced robotics that replaced workers and shut down US production facilities. Respondents saw a captioned picture of automation at an auto plant. We emphasized that US firms were the source of the automation technology. Respondents also saw a picture of CISCO headquarters, a US company to whom automation advances were attributed.

For the foreign automation treatment (third pane), we again matched the domestic automation treatment. Except, we emphasized how foreign firms in Europe and Asia (SAP, Alibaba, and Samsung) had developed the technology that replaced workers, and we included a picture of Alibaba headquarters. We mentioned multiple countries and firms so that respondents weren’t solely thinking about high profile examples, like China and Huawei. For most respondents, Alibaba is a vaguely foreign company, but doesn’t immediately make them think of China. The domestic labor shock condition kept everything the same as in the foreign labor treatment, except that job relocation was to other states within the US. It uses the same picture for labor as the foreign/labor treatment and a similar picture as domestic/automation, showing over-ground shipping instead of a container ship, shown in the right-most pane.

In the taxonomy of Brutger et al. (2020) our survey is non-hypothetical, identifies real actors, and is high in contextual detail. Note that the treatments themselves are relatively small changes in a detail-rich article. This tends to bias against finding larger treatment effects, making our approach more conservative.
Figure 5: Treatment Articles

(a) Foreign/Labor

(b) Dom./Automation

(c) Foreign/Automation

(d) Domestic/Labor
4.2 Outcome Measures

We then told respondents “we want to ask how you think the US Federal government should respond to events like the one described in the article.” Respondents saw brief bullet points that recapped the article they had just read. For example, a respondent assigned to the Foreign Automation treatment condition read:

To recap:

- The company is laying off a large number of workers.
- The main cause of the layoffs is the company’s decision to replace workers with automation and technology.
- The technology was developed by foreign firms.

Respondents were then asked how much they agreed or disagreed with the following set of statements, presented in random order. They answered with a slider that ranged from 0 (strongly disagree) to 100 (strongly agree).

- The Federal government should increase benefits that are paid to people who are unemployed.
- The Federal government should restrict imports of automobiles by increasing tariffs.
- The Federal government should increase regulations to limit a company’s ability to replace workers with automation.

For all treatments, the first outcome measure describes support for one of the most prominent redistributive safety nets against dislocation - unemployment benefits. For the foreign labor treatment, restricting imports of automobiles via tariffs are the natural backpedaling policy. For automation, regulations making it harder for firms to replace workers with automation is a policy to blunt automation shocks.

We constructed a measure of the difference between support for the relevant backpedaling policy versus transfers. As the theoretical model shows, the relative level of support for
possible responses is important, not just the nominal level of support. Features of a particular experimental design — intentional or idiosyncratic — can influence nominal levels of support for a particular response. Using differences in support for possible responses helps alleviate this concern.

For the labor treatments, the difference measure equals the respondent’s support for transfers minus support for import restrictions. For the automation treatments, the difference measure equals support for transfers minus support for automation regulations. Note too that we focus on restrictions on US firms’ ability to replace workers with automation for both the foreign and domestic automation treatments. The policy response – regulate automation – is not about tariffs on robot imports or policies designed to slow foreign technological development. This measure matches the theoretical model by showing how much a respondent supports transfers relative to policies backpedaling against that particular shock.34

We block-randomized treatment assignment based on whether the respondent party identification. The randomization procedure worked as expected, with only minor imbalances across treatment groups.35

We told respondents that we would ask them about the content of the article at the end of the survey. Respondents generally answered these questions accurately. We also timed how long respondents spent on each page of the article. Time spent reading the article was speedy, but not unexpectedly so for an online survey like this one.36

4.3 Results: Relative Weights on Transfers vs. Policy

Table 2 shows summary data for the differences between the support for backpedaling versus transfers.37 Again, for labor shocks, this is the difference in support between im-

34 The article was written so that each outcome question read coherently for all treatments.
35 See appendix.
36 See appendix.
37 The appendix shows the levels of support for each outcome question, by treatment condition. Confidence intervals calculated using the means and variance for each cell and z score standardization.
port restrictions and transfers. For automation, this is the difference in support between automation restrictions and transfers. The mean of the differences for each treatment condition are all negative, because respondents generally supported transfers more than backpedaling.

As predicted, foreign shocks caused respondents to place greater relative weight on the backpedaling policy, substituting away from transfers. As an initial look at the first prediction – that going from foreign labor to domestic automation shocks increases the weight on transfers – we see that this is indeed the case. Respondents reading the foreign labor treatment had nearly equal support for tariffs versus transfers, slightly preferring transfers. Respondents reading the domestic automation treatment placed a much higher weight on transfers, compared to restricting automation. Support for transfers was over 10 points higher in the domestic automation treatment condition.

<table>
<thead>
<tr>
<th></th>
<th>Labor (Imported)</th>
<th>Automation (Exported)</th>
</tr>
</thead>
</table>
| **Foreign** | Backpedaling Policy: 63.6
Transfers: 66.9 | Backpedaling Policy: 56.7
Transfers: 64.7 |
| **Difference**: -3.2
95% Conf. Int. $[-5.8, -0.6]$ | **Difference**: -7.9
95% Conf. Int. $[-10.1, -5.7]$ |
| **Domestic** | Backpedaling Policy: 58.3
Transfers: 65.4 | Backpedaling Policy: 54.4
Transfers: 66 |
| **Difference**: -7.2
95% Conf. Int. $[-9.7, -4.6]$ | **Difference**: -11.6
95% Conf. Int. $[-13.8, -9.4]$ |

Table 2: Mean differences in preferred policy response by treatment condition. All entries are means of support for the relevant policy, transfers, or their difference as appropriate. Reported differences may not agree with reported levels due to rounding.

Table 2 also shows support for our second prediction. Moving from domestic to foreign automation raises support for regulating automation and lowers support for transfers. When reading about foreign automation, respondents shift their preferred responses more towards automation restrictions. In the domestic automation condition, respondents sup-
ported transfers over automation restrictions by an average of 11.61 points. For foreign automation, this difference shrinks to 7.85 points.\footnote{Note too that the foreign labor-domestic automation comparison involves different backpedaling policies, depending on the treatment. It is possible that respondents are simply more familiar with or supporting of tariffs, writ large. However, the comparison of preferences between the foreign and domestic automation treatments does not have this issue, since the policy remedy - automation regulations - is the same in both.}

To analyze these differences statistically, we first compare differences across respondents assigned to the Foreign Labor and Domestic Automation treatments. The dependent variable again uses the relevant policy in each case, i.e. tariffs minus transfers for labor and automation restrictions minus transfers for automation. Table 3 shows the results. The first column regresses this difference on an indicator for the Foreign Labor treatment. The second column adds a wide array of controls.

The positive coefficients show how the differences in support for the policy versus transfers increases with the Foreign Labor, compared to the Domestic Automation treatment. Moving to Foreign Labor causes the increase in support for import restrictions to far outweigh any corresponding increase in support for transfers. This makes the difference in support for the two responses bigger.

The second two columns of Table 3 show the same analysis for the second prediction, comparing responses to the Domestic and Foreign Automation treatments. The sample in these two columns is restricted to respondents receiving of the automation treatments, and the main independent variable is an indicator for Foreign Automation. Going from domestic to foreign automation has a similar effect as going from domestic automation to foreign labor. It again increases the difference between support backpedaling via automation restrictions and transfers. The magnitudes for this effect are slightly smaller than that of the Foreign Labor treatment, but the similarities in effects are striking. When told that automation is foreign, respondents adjust their preferred policy bundle in similar ways to when we emphasized a Foreign Labor shock.

We do not find evidence that making automation foreign increased support for tariffs. This is reassuring that respondents did not misinterpret the articles’ treatments or misat-
Table 3: Effect of Shock Type on Preferred Response (policy minus transfers)

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>relevant policy difference</th>
<th>restrict automation difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Foreign Labor</td>
<td>8.436***</td>
<td>9.391***</td>
</tr>
<tr>
<td></td>
<td>(1.753)</td>
<td>(1.697)</td>
</tr>
<tr>
<td>Foreign Automation</td>
<td></td>
<td>3.749**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1.608)</td>
</tr>
<tr>
<td>Sept Sample</td>
<td>−0.059</td>
<td>0.315</td>
</tr>
<tr>
<td></td>
<td>(1.799)</td>
<td>(1.749)</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Subsample</td>
<td>DA + FL</td>
<td>DA + FL</td>
</tr>
<tr>
<td>Observations</td>
<td>1,565</td>
<td>1,490</td>
</tr>
</tbody>
</table>

Note: *p<0.1; **p<0.05; ***p<0.01
Full estimates for controls available in appendix Table ??.
tribute blame in the experiment. In both the foreign and domestic automation treatments, most respondents preferred regulating automation to tariffs, as well.

4.4 Extended Results and Robustness

Here, we briefly describe a follow-up experiment as well as several robustness checks and extensions to the main results. The appendix describes each in greater detail.

4.4.1 Follow up experiment

We conducted a large ($N = 2,182$), follow-up experiment in May 2022 with two goals. First, we wanted to replicate the main finding. Replication helps make sure that our results are not driven by the timing of our original experiment or specific experimental design choices. The initial experiment was fielded when unemployment concerns from COVID rose rapidly, potentially making respondents more sensitive to threats to employment. In May 2022, unemployment concerns had lessened. Our initial experiment also used a news story about the auto sector, with named companies. Details or unintended content in the vignettes could also have influenced results. The follow-up uses an abstract, informational treatment about general job losses from automation. This helps ensure that results aren’t driven by idiosyncratic features of our initial experiment.

Second, we wanted to pinpoint what aspects of foreignness triggered the responses predicted by our theory. The three aspects of economic nationalism from Section 2.2 could drive preferences towards particular policy remedies. The follow-up explores which aspects of economic nationalism push respondents the most to support regulations over transfers for foreign shocks.

Respondents first read a brief paragraph about the changing nature of work due to automation. We then randomly assigned respondents to information about whether automation was foreign- or domestically-sourced. Then, for respondents who were told that a significant proportion of automation technology is foreign, we randomly assigned them
to one of three arguments about the potential downsides of foreign technology. Each argument emphasized one of the aspects of economic nationalism described in the theory. The foreign reliance treatment emphasized the worry that foreign technology makes the US dependent on other countries. The relative gains treatment emphasized that the US gained less than the foreign country. The within-country redistribution treatment emphasized how imported technology harmed “blue-collar” workers in the “heart” of America: words used to evoke specific images of who loses from imported automation. The outcome measures were very similar to those used above. They asked respondents to choose the degree to which they agreed with regulating automation and increasing unemployment benefits as a government response.

<table>
<thead>
<tr>
<th></th>
<th>Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>Policy: 53</td>
</tr>
<tr>
<td></td>
<td>Transfers: 50.3</td>
</tr>
<tr>
<td></td>
<td>Difference: 2.8</td>
</tr>
<tr>
<td></td>
<td>95% Conf. Int. [−0.1, 5.7]</td>
</tr>
<tr>
<td>Foreign</td>
<td>Policy: 58.9</td>
</tr>
<tr>
<td></td>
<td>Transfers: 52.4</td>
</tr>
<tr>
<td></td>
<td>Difference: 6.6</td>
</tr>
<tr>
<td></td>
<td>95% Conf. Int. [5.1, 8.2]</td>
</tr>
</tbody>
</table>

Table 4: Mean differences in policy response minus transfers, by treatment condition.

As shown in Table 4, we again find that emphasizing the foreignness of automation technology and giving arguments about the potential downsides increases the weight that respondents place on regulations relative to transfers. In the followup experiment, respondents more strongly preferred regulations over transfers, so the outcome measure — regulations minus transfers — is positive.39 This difference increased sharply when the

39 In the other experiment, these differences were negative since respondents preferred transfers more. This could be because the other experiment focused on tangible, personalized job losses. This is further evidence that comparing relative support for government responses is valuable.
Figure 6: The error bars show 95% confidence intervals. The outcome is the difference in support for the appropriate backpedaling policy and transfers.
technology’s foreign origins were emphasized. This effect is statistically significant using regression analyses like those used in the initial experiment.40

Figure 6 breaks down these differences by the different foreign treatments.41 The foreign reliance and relative gains treatments have the strongest effects on increasing the difference in support for transfers versus automation restrictions. The within-country treatment also increases the weight respondents place on regulation, but we cannot reject the null of no effect for that particular treatment in some statistical specifications. This suggests that foreignness as an explanation for support for various government responses is driven more by concerns about reliance and relative gains, compared to concerns about which co-nationals are harmed.

4.4.2 Robustness

We presented results using a differences outcome measure, support for policy remedies minus support for transfers. There are two alternate approaches using \textit{shares} instead of differences: (1) $\frac{\text{relevant policy}}{\text{relevant policy} + \text{transfers}}$ and (2) $\frac{\text{relevant policy}}{\text{tariffs} + \text{regulate automation} + \text{transfers}}$. The two measures differ in how they treat the policy remedy for the \textit{other} shock, ie how they treat tariffs for a respondent receiving the automation treatment or automation regulations for someone receiving the foreign labor treatment. The first measure excludes the less relevant policy from the denominator. The second measure includes it.

As shown in the appendix, results using differences are similar to results using both shares measures. The Foreign Labor and Foreign Automation treatments increase the share of respondents’ preferred responses consisting of restrictions on imports or automation. These treatments also decrease the share consisting of support for transfers.

The appendix also contains additional analyses and robustness checks. For example, we replicated the main results broken down by race. We found, consistent with existing

40See appendix.

41Confidence intervals here and in Table 4 calculated using the means and variance for each cell and z score standardization.
work, that the Foreign Labor treatment effect is largest among white respondents. Though, we found no evidence of different treatment effects across race for Foreign versus Domestic Automation. We also replicated the main results using a much longer set of control variables, without binning categorical variables. Results are similar to those presented above.

We also structured the follow-up experiment to allow within- and across-respondent comparisons. The above results are from across-respondent comparisons. Results are similar using within-respondent analyses.

5 Discussion and Conclusion

Our paper sheds light on why globalization, instead of automation, triggered political reactions, and why that reaction de-emphasized redistribution. Economic nationalism, which values exports over imports, makes citizens prefer tariffs for globalization and redistribution for automation. Facing a globalization shock, tariffs remedy part of the problem and also substitute for transfers. Facing automation, regulations weaken domestic firms, so citizens more heavily favor transfers.

Our answer complements existing arguments that automation is simply less salient than trade. It was not long ago that academics assumed that trade was an exceptionally low salience issue among foreign policy issues, which were themselves relatively low salience.42 Our argument helps understand why trade rose to the forefront of political consciousness, as opposed to automation. Our research further helps explain disillusionment with “embedded liberalism,” which many citizens perceive as weak and uncredible.43 This lack of credible potentially arose from a self-perpetuating cycle. If citizens prefer tariffs and this crowds out deeper redistribution, then citizens may further lose faith in social

43 Colantone and Stanig (2018).
safety net programs. As globalization deepens, citizens may be less inclined to reach for transfers as a remedy, furthering the perceived ineffectiveness of redistribution.

A natural extension of this research would examine attitudes in countries with different factor endowments. For a country that imports automation technology, an automation shock might engender stronger demand for a direct, regulatory remedy. Citizens in this hypothetical country might not fear losing competitiveness in a high-tech industry that they do not lead. Regulations wouldn’t hurt their national standing so they are freer to use regulation as the remedy. This helps explain why many EU members have been at the forefront of automation regulations.\(^{44}\) The proposed regulations, along with other major initiatives like the General Data Protection Regulation (GDPR), are more politically popular, because they largely target foreign technology giants.

Separate from globalization, our research makes a direct contribution to the politics of automation and how citizens respond to automation shocks. Our research suggests opportunistic politicians might find greater support for regulating automation, by emphasizing the foreignness of macroeconomic forces. Our arguments go beyond “old-school” manufacturing. Trends towards white-collar automation are, by now, well documented. A politician courting pharmacists displaced by automation, for example, could emphasize the foreignness of imported machinery from German robotics giant, DENSO.\(^{45}\) The next frontier of automation also extends far beyond physical machines to include digitization, ICT, and artificial intelligence. Here, too, some data suggest an opening window of opportunity for politicians to cast technologies as foreign. In surveys of over 1,000 global leaders conducted in 2020 and 2021, almost 35% of respondents answered “Very likely” or “Likely” when asked about the likelihood that “the innovation center of the world will move from Silicon Valley in the next four years.” The majority of respondents were C-level executives (eg CEO, CFO, COO) for their firms. This number down from 58% in 2019.\(^{46}\)

\(^{45}\)https://willrobotstakemyjob.com/awesome-examples-of-robots-in-the-workplace

Recent high profile events, like the Trump administration’s antagonism toward TikTok emphasized the power of arguing that a piece of foreign technology poses a unique threat. The United States currently has strong reasons to resist policy restrictions on emerging technologies – the world’s tech giants are mostly American firms, which is a large reason why the United States fights to tear down barriers like data localization or privacy laws. But if foreign challengers emerge, the temptation to reach for those policy restrictions with an appeal towards nationalism, will only increase.
6 References

Dixit, Avinash, and John Londregan. 1996. “The Determinants of Success of Special Inst
Against Free Trade? Experimental Evidence from the United States and Japan.” Working paper.
Why Populists Neglect Automation: The Political Economy of Economic Dislocation
ONLINE APPENDIX

June 2022
Appendix Table of Contents
A THEORY APPENDIX ITEMS

This section of the appendix shows the steps to generate Figure 3 – showing the preferred compositions of policy responses to different types of shocks. We show how to arrive at this prediction in three steps: (1) finding the set of income allocations that are feasible and the policy bundle used to achieve them (p for backpedaling policies and t for transfers) (2) how these decisions change for nationalists, for different kinds of shocks and (3) how to decompose the total response into the weight placed on p and t.

A.1 Locating the Frontier of the Feasible Set

We first construct the frontier of the feasible set of income allocations. We can define this by finding the highest income H_W for each possible H_L using the policy tools (p and t). The frontier is characterized by solving the following maximization:

$$\max_{p,t} H_W \text{ s.t. } H_L = K$$

for some fixed K. Forming the Lagrangean, taking the first order conditions, setting equal to zero and simplifying we obtain: $\ell'(t) = \frac{\alpha - 1}{\alpha}$. The above equation completely determines the value of t which maximizes H_W for a fixed value of H_L. The transfer must equate the decay rate with the redistribution index. Notice that the frontier choice of t is decreasing in α: when the right hand side is higher a smaller transfer is required to drop ℓ' sufficiently low. The intuition is that when the distributional consequences of the shock are extreme it would be very relatively inefficient to use leaky transfers to redistribute wealth since larger transfers are more leaky.

When is there an interior solution to the above equation? Since $\ell'(0) = 1$ by assumption and $\ell''(t) < 0$ it must be the case that there exists some t^* which solves the equation because $(\alpha - 1)/\alpha < 1$.

Once t^* is determined it is possible to identify the rest of the feasible set as a function
of p using the constraints $H_L = K$ and $A(p) = (-K + I + \ell(t^*))/((\alpha - 1)$. An example of the feasible set is shown in Figure 7. How does the frontier choice of p change with α? Recall that increasing α decreases t^*. Therefore, the numerator decreases with α and the denominator increases, so $A(p)$ must decrease with α. Thus, because $A(p)$ must decrease as a function of α, we have concluded that p must increase as a function of α. Thus, we have determined that p and t are substitutes along the frontier of the feasible set and thus the feasible set is convex towards the origin.

![Figure 7: Example feasible set with the frontier highlighted and a sample of allocations plotted. Each dot shows a potential reallocation of income between the winners and losers. The diameter of the outer dot shows the magnitude of the policy change needed to achieve that allocation. The inner dot shows the amount of transfers needed. The graph was made using the following parameters: $A(p) = 10 - p^2$, $\ell(t) = \log(t + 1)$, $I = 10$, and $\alpha = 1.25$. Given these parameters, the allocation $(H_L = 7.5, H_W = 22.5)$ would occur in the absence of government action. Allocations along dotted lines all have equal policy interventions p while allocations along dashed lines have equal transfers t. The upper and lower envelopes are illustrated with black lines whose slope is $\alpha/(1 - \alpha) = -5$. The feasible set’s upper envelope is below the black line when the allocation can be achieved with transfers alone and requires no policy intervention.](image-url)
Notice as well that the frontier of the feasible set is linear in H_L for all points where both transfers and protection are used. The slope of the upper envelope can be found by plugging in and taking a derivative with respect to H_L:

$$H_W = I + \alpha A(p) - t$$

$$= I + \alpha \left(\frac{-H_L + I + \ell(t^*)}{\alpha - 1} \right) - t^*$$

$$\frac{\partial H_W}{\partial H_L} = \frac{\alpha}{1 - \alpha}$$

Recall when taking the derivative that we have already shown t^* does not depend on H_L since it depends only on α.

A.2 The Behavior of Nationalists

How does adding nationalism to preferences affect a voter’s preferred location within the feasible set (and the policy bundle used to achieve it)? We start by expressing nationalist preferences as an additively separable component to a “regular” cosmopolitan voter’s preferences: $U_N(H_W, H_L) = U_C(H_W, H_L) + u(p)$ where N and C stand for nationalist and cosmopolitan, respectively, and $u(p)$ is the nationalist’s direct utility from the protection level p. Consider the maximization problem

$$\max_{p,t} U_C(H_W, H_L) + u(p)$$

Taking the first order conditions, setting them equal to zero, and simplifying we obtain:

$$\frac{\partial U_C}{\partial H_W} = \frac{\alpha - 1}{\alpha} - \frac{\partial u}{\partial p} \frac{\partial U_C}{\partial H_L}$$

(1)

The above expression makes it clear that the cosmopolitan (a voter for whom $\partial u/\partial p = 0$) will make different choices than a nationalist. Calculating the first order condition with
respect to transfers t

$$\frac{\partial U_C}{\partial H_W} \frac{\partial H_W}{\partial t} + \frac{\partial U_C}{\partial H_L} \frac{\partial H_L}{\partial t} = 0$$

$$\ell'(t) = \frac{\partial U_C}{\partial H_W} = \frac{\partial U_C}{\partial H_L}$$ (2)

First, consider Equation (1). When a nationalist is confronted with a shock of foreign origin their utility for policy is positive, so $\partial u/\partial p > 0$. Thus, the term $-\alpha A'(p)\frac{\partial U_C}{\partial H_L}$ is positive (recall $A'(p) < 0$ by assumption). Therefore, the right hand side is larger for a nationalist facing an import shock than it is for a cosmopolitan for whom $\partial u/\partial p = 0$. The nationalist’s choice of p thus needs to either lower $\partial U/\partial H_L$, raise $\partial U/\partial H_W$, or both, relative to the choice of the cosmopolitan. Choosing a higher value of p decreases H_W and raises H_L: thus, it also raises $\partial U/\partial H_W$ and lowers $\partial U/\partial H_L$. Following the logic, a nationalist must choose a higher level of policy p than a cosmopolitan. The nationalist is reacting to their intrinsic incentive to stop the flow of imports, and they are accepting more redistribution as a consequence.

Now consider the incentives described by Equation (2). The nationalist’s higher choice of p leads to more redistribution raising $(\partial U/\partial H_W)/(\partial U/\partial H_L)$. Because the marginal rate of substitution between incomes H_W and H_L is higher, the nationalist’s optimal transfer must change. By assumption, $\ell''(t) < 0$, meaning that decreasing t will increase $\ell'(t)$. The nationalist therefore prefers fewer transfers. This choice is a byproduct of the effect of nationalism on demand for policy. The nationalist’s higher demand for policy means that they are accepting more redistribution. Thus, they need fewer transfers to achieve their preferred level of redistribution. The demand for policy that stops imports has crowded out their demand for transfers.
A.3 Policy Composition of Preferred Allocation

How much of their total redistribution does the voter implement with each policy instrument? Consider the following vector decomposition of the preferred income allocation:

\[v_t = (H_L(0, t^*) - H_L(0, 0), H_W(0, t^*) - H_W(0, 0)) \]

\[\|v_t\| = \sqrt{(-t^*)^2 + \ell(t^*)^2} \]

\[v_p = (H_L(p^*, 0) - H_L(0, 0), H_W(p^*, 0) - H_W(0, 0)) \]

\[\|v_p\| = (A(p^*) - A(0))\sqrt{1 - 2\alpha + 2\alpha^2} \]

\[v_t + v_p = ((1 - \alpha)(A(p^*) - A(0)) + \ell(t^*), \alpha(A(p^*) - A(0)) - t^*) \]

\[\|v_t + v_p\| = \sqrt{((1 - \alpha)(A(p^*) - A(0)) + \ell(t^*))^2 + (\alpha(A(p^*) - A(0)) - t^*)^2} \]

Now we can project the transfers vector onto the total movement to understand what fraction of the movement is due to transfers and what fraction is due to policy. The scalar projection of \(a\) on \(b\) is defined as \(\text{proj}_b(a) = a \cdot b/\|b\|\) and it measures how much of \(a\) is pushing in the same direction as \(b\). The voter is relying more on policy if

\[\text{proj}_{v_t+v_p}(v_p) \geq \text{proj}_{v_t+v_p}(v_t) \]

\[\frac{v_p \cdot (v_t + v_p)}{\|v_t + v_p\|} \geq \frac{v_t \cdot (v_t + v_p)}{\|v_t + v_p\|} \]

\[\|v_p\|^2 \geq \|v_t\|^2 \]

\[(A(p^*) - A(0))^2((1 - \alpha)^2 + \alpha^2) \geq \ell(t^*)^2 + (t^*)^2 \]

The above inequality applies regardless of whether the voter is a cosmopolitan or nationalist and regardless of where the optimal point is located within the feasible set. Recall that \(t^*\) does not vary for sufficiently high values of \(H_L\) for a cosmopolitan voter. There-
fore, there is some threshold above which the cosmopolitans start to rely more heavily on policy than on transfers.

The actual fraction attributable to transfers is

\[
\frac{\text{proj}_{v_t+v_p}(v_t)}{\text{proj}_{v_t+v_p}(v_t)+\text{proj}_{v_t+v_p}(v_p)} = \frac{\ell(t^*)^2 + (t^*)^2 + (1-\alpha)(A(p^*) - A(0))\ell(t^*) - \alpha(A(p^*) - A(0))t^*}{((1-\alpha)(A(p^*) - A(0)) + \ell(t^*))^2 + (\alpha(A(p^*) - A(0)) - t^*)^2}
\]

B SURVEY APPENDIX ITEMS

B.1 Ethics, Deception Description and Justification

Lucid recruits and compensates respondents in different ways. They can be recruited from panels or online ads. Depending on how they were recruited, some respondents are compensated with reward points for various online retailers.

Our survey experiment used deception by showing respondents an article that included details that we manipulated. We described it as a news article and did not attribute it to any particular outlet. We believe that our use of deception entails minimal harm, if any, because our articles contain information commonly found in mainstream news outlets. A regular media consumer likely reads articles about globalization, offshoring, automation, and job losses. We also made respondents aware of the possibility of misinformation at the informed consent stage. Our informed consent included: “As part of this research design, you may not be told everything or may be misled about the purpose or procedures of the research. You will be fully informed about the procedures and any misinformation at the conclusion of the study.” Respondents could therefore make their own decisions about the possible harms.

Our debrief document then clearly described the deception used. It also provided links and information to published mainstream articles about the topics covered in our survey. (We omit the full debrief here for length, but it is available on request.)
Finally, this deception was necessary since it would not have been feasible to find real articles whose content matched that of the treatments without also varying many other features. Articles about different shocks, labor and automation, foreign and domestic, also vary important features like the industry, tone, or magnitude of the shock. We chose not to use a purely hypothetical treatment because we wanted our instrument to mimic, as closely as possible, the “real-world” treatment of reading an article about an actual event.

B.2 Balance Testing

The respondents were balanced across treatment conditions along a larger set of respondent characteristics. We used the procedure described in Hansen and Bowers (2008) to assess balance in respondent characteristics across treatment groups.¹ We fail to reject the null of no significant differences between respondents in the domestic versus foreign automation treatments (p = 0.74). There is some imbalance when comparing the foreign labor and domestic automation conditions. Males were overrepresented in the foreign labor condition. This is very unlikely to influence our inferences. All of the results below are robust to including controls for these observables.

Figure 8 shows the standardized differences in 12 respondent characteristics, across the foreign/domestic and automation/labor treatments. As mentioned in the main manuscript, we can generally reject the null hypothesis of imbalance and there are only isolated dimensions of imbalance.

B.3 Sensitivity Testing for Imbalanced Covariates

As shown in the main manuscript, imbalances in these observables do not confound the main estimates since we can include these variables as controls. However, the imbalance raises the possibility that - if there is imbalance in an observable we know about, then

Figure 8: The Bowers and Hansen (2008) omnibus test p values are 0.13 for the Foreign Labor / Domestic Automation treatment and 0.78 for the Foreign/Domestic Automation treatment.
there could also be imbalance in an unobservable that isn't measured. Sensitivity testing is designed to assess the potential severity of this problem. For an application focusing on international politics, see Chaudoin, Hays, and Hicks (2018). Here, we use the benchmarking approach developed in Cinelli and Hazlett (2020). Unobserved confounding would have to involve a much, much stronger degree of imbalance than we observed in our sample - much worse than our observed imbalance - and this imbalance would have to pertain to an unobservable that was much more strongly correlated with outcomes than our observables. We therefore conclude that unobservables are unlikely to have strongly influenced our conclusions. (Results omitted for length.)

B.4 Sample Comparison to National Demographics

Table 5 compares demographic characteristics from our sample with those found in the 2020 Census Bureau American Community Survey. Our sample matched theirs fairly closely. The largest difference is that Black and Hispanic respondents are underrepresented in our sample.

<table>
<thead>
<tr>
<th>Group</th>
<th>Sample Percentage</th>
<th>ACS Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>54.76%</td>
<td>51.30%</td>
</tr>
<tr>
<td>20 to 34 years of age</td>
<td>20.70%</td>
<td>27.51%</td>
</tr>
<tr>
<td>35 to 54 years of age</td>
<td>36.81%</td>
<td>33.88%</td>
</tr>
<tr>
<td>55 to 64 years of age</td>
<td>17.69%</td>
<td>17.21%</td>
</tr>
<tr>
<td>65 years of age and over</td>
<td>22.19%</td>
<td>21.40%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>9.42%</td>
<td>18.20%</td>
</tr>
<tr>
<td>White</td>
<td>76.54%</td>
<td>75.10%</td>
</tr>
<tr>
<td>Black</td>
<td>9.61%</td>
<td>14.20%</td>
</tr>
</tbody>
</table>

Table 5: Sample Comparison with American Communities Survey (5 year sample from 2020)

B.5 Levels of support for different responses

Table 2 in the main manuscript showed how different types of shocks affected the relative weight placed on particular responses. Figure 9 shows the distribution of responses by treatment condition - foreign versus domestic - for each of the different policy responses. This lets us show the main results in a slightly different way. Looking at the top left pane, moving from domestic to foreign labor treatments increases support for tariffs, and moves that support to a higher level than domestic automation (top right pane). Looking at the top and bottom right panes, making automation foreign increases support for restricting automation and decreases support for benefits, widening the difference between those two support levels and increasing the weight places on automation restrictions.

![Graphs showing distribution of responses by treatment condition.](image)

Figure 9: Levels of preferred policy response by treatment condition. Graphs in columns are subsetted to either a Labor shock or an Automation shock treatment. Vertical lines represent the mean response by treatment condition.
B.6 Main Estimates: Restricting sample based on speed

In the main manuscript, we excluded respondents who took less than 30 seconds to complete the survey. We can make those restrictions more strict and show how results are similar. We reproduced the estimates from Table 3 in the main manuscript, with the additional exclusion of all respondents whose time to completion was only in the first quartile (330 seconds). Results are slightly stronger for the first prediction, comparing foreign labor and domestic automation. Results are slightly weaker for the second prediction, comparing foreign and domestic automation. In all cases, signs are the same and each achieves conventional levels of statistical significance. (Table omitted for appendix length.)

B.7 Effect of Treatment on Shares

We prefer using differences as the outcome measure in the main analysis instead of shares for two reasons. First, based on simulations we conducted, using differences greatly weakens statistical power in the face of even small amounts of measurement error. This can lead to Type 2 errors, where we fail to reject a null hypothesis that should have been rejected. Second, using shares also risks Type 1 errors, because, if treatment affects the variance of outcome measures, it can create the appearance of treatment effects, even if there are none. We thank Anton Strezhnev for pointing this out to us.

Table 6 reproduces Table 3, only it uses \(\frac{\text{relevant policy}}{\text{relevant policy} + \text{transfers}} \) as the outcome measure. For Labor shocks, the shares for the relevant policy is defined as \(\frac{\text{restrict imports}}{\text{restrict imports} + \text{benefits}} \). For Automation shocks, the shares for the relevant policy is defined as \(\frac{\text{restrict automation}}{\text{restrict automation} + \text{benefits}} \). Results are similar to those in the main text. Results are also similar using \(\frac{\text{relevant policy}}{\text{tariffs} + \text{regulate automation} + \text{transfers}} \) as the outcome measure (table omitted for length).
Table 6: Effect of Treatment on Policy Shares

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. Labor</td>
<td>0.070***</td>
<td>0.073***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For. Auto.</td>
<td></td>
<td>0.036***</td>
<td>0.034***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.010)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.422***</td>
<td>0.393***</td>
<td>0.418***</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.031)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Controls?</td>
<td>N</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Observations</td>
<td>1,541</td>
<td>1,467</td>
<td>1,530</td>
</tr>
</tbody>
</table>

Note: *p<0.1; **p<0.05; ***p<0.01

B.8 Racial breakdowns

Table 7 shows the main results, interacting each treatment with an indicator variable for white respondents. The results are very interesting. First, the treatment effect of moving from Domestic Automation to Foreign Labor is much stronger among whites. In fact, there is very little effect for non-white respondents.

Second, the effect of going from Domestic Automation to Foreign Automation is not concentrated among either whites or non-whites. Both white and non-white respondents increase the weight they place on regulating automation under the Foreign Automation treatment, with white respondents increasing a little bit less. The latter result - that both groups respond similarly to Foreign Automation - is especially interesting, since it suggests that a politician wanting to “make automation foreign” might find responsive ears among broader segments of the population. The persuasive appeal of tariffs as a remedy for foreign labor shocks might have been especially powerful for whites, but appeals against foreign automation might not be limited to one racial group.
Table 7: Effect of Treatment on Policy Differences, white interaction term

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. Lab.</td>
<td>-1.610</td>
<td>0.037</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.309)</td>
<td>(3.305)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For. Aut.</td>
<td></td>
<td></td>
<td>4.618</td>
<td>4.991</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3.136)</td>
<td>(3.083)</td>
</tr>
<tr>
<td>White</td>
<td>-0.772</td>
<td>-5.411</td>
<td>-0.750</td>
<td>-2.091</td>
</tr>
<tr>
<td></td>
<td>(2.517)</td>
<td>(3.436)</td>
<td>(2.518)</td>
<td>(3.329)</td>
</tr>
<tr>
<td>White*For. Lab.</td>
<td>13.490***</td>
<td>12.250***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.887)</td>
<td>(3.837)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White*For. Aut.</td>
<td></td>
<td></td>
<td>-1.163</td>
<td>-1.525</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3.648)</td>
<td>(3.589)</td>
</tr>
<tr>
<td>Constant</td>
<td>-10.952***</td>
<td>-12.240**</td>
<td>-12.140***</td>
<td>-15.658***</td>
</tr>
<tr>
<td></td>
<td>(2.424)</td>
<td>(5.573)</td>
<td>(2.392)</td>
<td>(5.271)</td>
</tr>
<tr>
<td>Controls?</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>1,565</td>
<td>1,490</td>
<td>1,566</td>
<td>1,494</td>
</tr>
</tbody>
</table>

Note: *p<0.1; **p<0.05; ***p<0.01

B.9 Results with long control list

The regressions in Table 3 used binned versions of some variables instead of categorical variables for all possible responses to all of the control questions. For example, we collapsed some answers to the education question into a smaller number of categories. Here, we replicate the main specifications with the much longer list of controls, in Table 8. The results from Table 3 obtain.

C Follow Up Experiment: Aspects of Nationalism

We fielded our pre-registered follow-up experiment again using Lucid Theorem in May of 2022. The sample consisted of 2182 US respondents, aged 18 or older. Our sampled was similar in respondent characteristics to the main experiment and similarly well-representative of the overall population. (We omit the comparison table for length.)
C.1 Treatments and Outcome Measures

We structured our experiment to allow for between- and across-respondent comparisons. Respondents all read the following brief introduction about automation and its impacts:

Please read the following information carefully. We will then ask you how you think the government should address these challenges.

A major issue these days is how the nature of work is changing. Many manufacturing firms have replaced jobs that were previously done by employees with advanced robots that can perform similar tasks. This can help manufacturing firms, but it also means the number of people working in manufacturing jobs has decreased.

Analysts argue that this type of automation technology can help US firms produce goods more efficiently.

They then all answered the same two questions from the main experiment about how the government should respond (increased benefits to the unemployed, regulations to limit replacement of workers with automation). Respondents indicated their agreement...
or disagreement using a slider, ranging from 0 (Strongly disagree) to 100 (Strongly agree). The order of the two items was randomized across respondents.

Respondents were then randomly assigned to one of two treatments, describing the source of automation as domestic or foreign. Those assigned to the domestic treatment condition read “Additionally, manufacturing firms purchased many of these advanced robots from American technology companies.” Those assigned to the foreign treatment read “U.S. manufacturing firms purchased many of these advanced robots from foreign technology companies located outside the United States, in countries like Germany and China.” They then answered the same two outcome measure questions, after the prompt “With this additional information, how do you think the government should respond?”

Finally, the respondents assigned to the foreign treatment then read an additional, randomly assigned treatment emphasizing a particular aspect of foreignness, tied to economic nationalism. The three treatments - shown below - gave information about reliance on foreign technology, relative gains, and coded information about the impact of foreign automation on different parts of America. We chose the wording of the third treatment to reflect the ways that political rhetoric discusses trade, subtly emphasizing manufacturing workers in the Midwest who are often white. Respondents then answered the same questions about regulations and unemployment benefits as before.

Reliance treatment: Analysts worry that relying on imported technology makes the United States too reliant on foreign technology from foreign countries. The United States would be vulnerable to foreign influence if other countries threatened to stop exporting their technology.

Relative gains treatment: Analysts worry that importing technology helps foreign firms more than it helps US firms. US firms will be able to sell products at a lower cost, but most of the profits would go to foreign firms that make the machines.

Within-country treatment: Analysts worry that imported technology hurts some

Americans more than others. Automation is especially harmful to hard-working, blue collar Americans working in the “heart” of the country, even if automation helps the US economy overall.

C.2 Randomization, Balance, and Attention

We used the same procedure as the main manuscript to assess balance across treatment groups. The overall χ^2 statistic for imbalance across groups is insignificant ($p = 0.152$). There were some differences in specific observables. Respondents in the foreign treatment had higher household incomes and were less likely to come from the Midwest region. The standardized differences are significant at conventional levels, though the differences are unlikely to affect the results we present here. Below, we control for these observables in our specifications. Additionally, we can use sensitivity testing to show that the imbalance in these observables is not likely to suggest sufficient imbalance in unobservables to threaten our main results. (Results omitted for length.)

![Figure 10: Balance across foreign/domestic. The Bowers and Hansen (2008) omnibus test p values is 0.32.](image)

Our respondents generally did internalize the treatments we gave them. After answering our outcome measure questions the final time, we asked them “Of the automation tech-
nology used in America, what is your best guess at how much comes from foreign firms, as opposed to US firms?” They responded with a slider ranging from 0 (no imports) to 100 (all imported). In general, respondents receiving one of the foreign treatments thought this percentage was between 3.9 and 5.1 percentage points higher.

C.3 Results

For analyzing treatment effects, we use the difference in how much a respondent agreed with the question about increasing regulating and the question about increasing unemployment benefits. Our expectation is that the foreign treatments will increase this difference, showing that the respondents placed a greater weight on regulating automation when told that it was foreign-source, as opposed to domestically sourced.

C.3.1 Between respondent results

For analyzing treatment effects between respondents, we used the differences outcome measure after the domestic treatment for respondents receiving the domestic treatment and after the full foreign treatment – i.e., learning that automation is foreign and receiving an argument about the implications of that – for respondents in one of the foreign treatments. Table 9 shows estimates from regressing (OLS) this difference on an indicator for whether a respondent received one of the foreign treatments, with and without respondent controls, and with and without controlling for their initial support levels for regulations and unemployment benefits. These regressions thus pool all three foreign treatments.

Results are similar across all specifications. Respondents receiving one of the three foreign treatments had a larger difference in their support for regulations versus transfers, and the difference is always positive. In other words, those respondents placed a greater weight on regulations, as opposed to transfers. They generally increased their weight on

6 In our pre-analysis plan, we said that we would analyze shares, not differences. For the reasons stated above, in section B.7, we departed from this part of our analysis plan after conducting extensive simulations.
regulations by 2-4 percentage points, relative to their agreement with a statement about increased transfers. Table 10 then shows the same series of regressions, using indicator variables for each of the three foreign treatments, rather than pooling them together. The base category is thus the domestic automation treatment.

The reliance and relative gains treatments consistently have greater effects than the within-country effects treatment. The reliance and relative gains treatments generally increase the respondent’s weights on regulations by 2.6 - 4.6 points, compared to support for benefits. The within-country treatment generally has smaller and always statistically insignificant effects.

Table 9: Effect of Foreign Treatment on Difference (Regul. - Transfers), Between-respondent estimates

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreign</td>
<td>3.879**</td>
<td>3.411**</td>
<td>2.441**</td>
<td>2.183**</td>
</tr>
<tr>
<td></td>
<td>(1.689)</td>
<td>(1.656)</td>
<td>(1.022)</td>
<td>(1.029)</td>
</tr>
<tr>
<td>Initial Trans.</td>
<td>-0.795***</td>
<td>-0.767***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.020)</td>
<td>(0.022)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Regs.</td>
<td>0.738***</td>
<td>0.738***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.021)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls?</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>2,133</td>
<td>2,078</td>
<td>2,128</td>
<td>2,073</td>
</tr>
</tbody>
</table>

Note: *p<0.1; **p<0.05; ***p<0.01

C.3.2 Within respondent results

We also find that the Foreign Reliance treatment had the strongest effect on increasing the weight respondents put on regulations, using within-respondent comparisons. For these comparisons, we use the difference outcome measured after the different foreign treatments have been administered and we control for the respondent’s level of support for regulations and benefits after the initial foreign/domestic treatment has been administered. In other words, these estimates describe how much more weight the respondent
between-respondent estimates

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. - Reliance</td>
<td>4.629**</td>
<td>3.731*</td>
<td>3.844***</td>
<td>3.402***</td>
</tr>
<tr>
<td></td>
<td>(2.056)</td>
<td>(2.014)</td>
<td>(1.251)</td>
<td>(1.263)</td>
</tr>
<tr>
<td>For. - Rel. Gains</td>
<td>4.515**</td>
<td>4.532**</td>
<td>2.632**</td>
<td>2.623**</td>
</tr>
<tr>
<td></td>
<td>(1.996)</td>
<td>(1.963)</td>
<td>(1.253)</td>
<td>(1.260)</td>
</tr>
<tr>
<td>For. - Within</td>
<td>2.495</td>
<td>1.984</td>
<td>0.844</td>
<td>0.539</td>
</tr>
<tr>
<td></td>
<td>(2.031)</td>
<td>(1.982)</td>
<td>(1.244)</td>
<td>(1.254)</td>
</tr>
<tr>
<td>Initial Trans.</td>
<td></td>
<td>−0.796***</td>
<td>−0.768***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.020)</td>
<td>(0.022)</td>
<td></td>
</tr>
<tr>
<td>Initial Regs.</td>
<td></td>
<td>0.738***</td>
<td>0.738***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.021)</td>
<td>(0.021)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>2.763*</td>
<td>−3.398</td>
<td>4.564***</td>
<td>0.570</td>
</tr>
<tr>
<td></td>
<td>(1.490)</td>
<td>(3.561)</td>
<td>(1.237)</td>
<td>(2.340)</td>
</tr>
<tr>
<td>Controls?</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>2,133</td>
<td>2,078</td>
<td>2,128</td>
<td>2,073</td>
</tr>
</tbody>
</table>

Note: *p<0.1; **p<0.05; ***p<0.01

places on regulations, even after she has already been told that automation is foreign in origin.

Table 11 shows these estimates with and without other controls. We set the within-country treatment as the base/reference category, since it had the weakest effects in the previous sections. The reliance treatment increases the weight respondents place on regulation, compared to the within-country treatment, by about 2.4 points. The relative gains treatment has a similar effect, though it is smaller and we cannot reject the null of no additional effect of this treatment, compared to the Within treatment.

C.3.3 Between-respondent results, excluding speeders

Results in the follow up experiment are generally similar when we exclude respondents who took the survey very quickly. (Results omitted for length.)
Table 11: Effect of Specific Foreign Treatments on Difference (Regul. - Transfers), Within-respondent estimates

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For. - Reliance</td>
<td>2.384**</td>
<td>2.246**</td>
</tr>
<tr>
<td></td>
<td>(1.017)</td>
<td>(1.035)</td>
</tr>
<tr>
<td>For. - Rel. Gains</td>
<td>0.819</td>
<td>0.868</td>
</tr>
<tr>
<td></td>
<td>(0.991)</td>
<td>(1.006)</td>
</tr>
<tr>
<td>Prior Regs.</td>
<td>0.835***</td>
<td>0.832***</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.019)</td>
</tr>
<tr>
<td>Prior Trans.</td>
<td>-0.875****</td>
<td>-0.857****</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>Constant</td>
<td>3.043***</td>
<td>-0.885</td>
</tr>
<tr>
<td></td>
<td>(1.040)</td>
<td>(2.177)</td>
</tr>
<tr>
<td>Controls?</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>1,592</td>
<td>1,551</td>
</tr>
</tbody>
</table>

C.3.4 Results by Race

In general, we do not find strong evidence of differential treatment effects by race. We replicated the above between-respondent analysis, interacting treatment indicators with a binary indicator for white respondents. The effect of the foreign treatment is generally stronger for whites (positive coefficients on the interaction terms), but we cannot reject the null hypothesis of equivalent effects. We also replicated this analysis, breaking down the foreign treatments into the the three specific foreign treatments. We would most expect the within-country treatment effects to be largest for whites, given that the within-country redistributional story is most often one of harmed blue-collar, white Americans. But we do not see consistent evidence of this. The treatments are again all generally stronger for whites, but in only one instance can we reject the null of equivalent effects - one particular specification for the within-country treatment. Though, in other specifications, the interaction term is negative. (Results tables omitted for length.)